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The receptor-ligand unbinding in the biological catch bond is analyzed within a simple model that comprises
a single bound state and two unbinding pathways. This model is investigated in detail for the jump-ramp force
regime, where the pulling force quickly jumps to a finite value and then is ramped linearly with time. Two
qualitative criteria are identified that distinguish the catch bond from the slip bond. First, the rupture force
probability density of the catch-bond exhibits a maximum-minimum pair, which develops at finite forces. In
contrast, the slip bond produces a maximum that first appears at zero force. Second, the catch bond can be
identified over a wide range of ramp rates by high rupture probabilities at low forces relative to the probability
at the maximum, in contrast to the slip bond, where the probability at the maximum always corresponds to the
most likely rupture force. Both distinctive features of the catch bond are masked by large jump forces,
indicating that the catch bond is best identified in experiments with moderate loading rates and small jump
forces. The catch-bond lifetime in the constant force regime is related to the probability density in the jump-
ramp regime, allowing one to determine the bond lifetime for a constant force by measuring the initial
probability density in the jump-ramp experiments with different jump forces and a fixed ramp rate. The key
analytic results are illustrated with the P-selectin/P-selectin glucoprotein ligand-1 bond.
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The binding of biological macromolecules through weak,
noncovalent interactions is critical for the functioning of liv-
ing organisms and their individual components. An under-
standing of the physics of the interactions can be achieved by
consideration of a potential energy profile that governs the
relative motion of receptor and ligand. The details of the
receptor-ligand interaction profile, including the number of
potential energy minima describing bound states, the types of
unbinding pathways, the heights of the energy barriers along
these pathways and so on, are of great interest to both ex-
perimentalists and theoreticians. The receptor-ligand binding
can be probed experimentally by application of an external
force. Current experimental measurements are performed on
ensembles of receptor-ligand complexes perturbed by hydro-
dynamic shear stress �1–4� and with individual systems ma-
nipulated with atomic force microscopy �AFM� �5–8� or op-
tical tweezers �9–11�. The applied forces can be both
stationary �7,8� and time dependent �12,13�. The studies of
catch-bond ensembles by hydrodynamic perturbations and
investigations of individual bonds with AFM complement
each other, creating a more complete picture of the receptor-
ligand interaction.

Generic with the known biological receptor-ligand bonds,
the bond lifetime decreases when a sufficiently strong force
pulls the bond. This regime is known as the slip bond and
occurs because the force lowers the energy barrier between
the bound and free states �14,15�. In contrast to the slip bond,
the catch bond is an unusual type of receptor-ligand binding,
where an external force pulling the bond increases the bind-

ing strength �16�. The growth of the catch-bond lifetime with
applied force is observed up to a critical force value, beyond
which the bond transforms into the ordinary slip bond.

As discussed in �17�, the catch-slip transition has been
discovered in systems involving bacterial cell attachment to
host cells via the lectinlike adhesin FimH �3� as well as in
the binding of P- or L-selectins with P-selectin glucoprotein
ligand-1 �PSGL-1�. The FimH system has been investigated
in flow chamber experiments, where the hydrodynamic shear
stress creates a detaching force acting to break the bond. The
selectin systems have been investigated both in flow cham-
bers and by AFM. The constant force scenario used to study
the P-selectin/PSGL-1 complex in �7,8� has been extended in
�13� to the jump-ramp regime, revealing additional features
of the biological catch-slip bond.

A model of the catch bond with a single bound state and
two alternative pathways to the free state was considered in
�18� and applied for the interpretation of the experimental
data �7,8,13�. The model contains four independent param-
eters, one less than the model developed in �13�. A seven-
parameter model was recently described in �19�. General fea-
tures of two-pathway models were considered in �20�.
Reference �8� rationalized the shape of the receptor-ligand
interaction potential of the two-pathway model.

The current paper analyzes the two-pathway, single-
bound-state model for the jump-ramp force regime. The ex-
perimental signatures of the time-dependent force that follow
from the two-pathway description of the biological catch
bond are considered in detail. The rupture force probability
density is investigated as a function of the applied force for
varying jump values and loading rates. The analytic results
obtained with the two-pathway model in the jump-ramp
force regime are illustrated with the experimental data on the
P-selectin/PSGL-1 complex �13�.

*Corresponding author. Electronic address:
prezhdo@u.washington.edu

PHYSICAL REVIEW E 72, 010903�R� �2005�

RAPID COMMUNICATIONS

1539-3755/2005/72�1�/010903�4�/$23.00 ©2005 The American Physical Society010903-1

http://dx.doi.org/10.1103/PhysRevE.72.010903


Our previous work �18� focused on the two-pathway
model represented by the receptor-ligand interaction poten-
tial, whose one-dimensional projection onto the direction of
the applied force is shown Fig. 1. The ligand escapes from
the bound state minimum 1 into the free state 0 by passing
through either the slip, xs, or catch, xc, barrier. The bond
survival probability distribution function P�t� satisfies the
rate equation

dP�t�
dt

= − �k1s + k1c�P�t� , �1�

where k1s and k1c are the rate constants for the escape over
the slip and catch barriers, respectively. According to Bell
�14�, the effect of the pulling force on the rate constants can
be explicitly represented by

k1s = k1s
0 exp�x1sf/kT�, k1c = k1c

0 exp�− x1cf/kT� . �2�

T is temperature and k is the Boltzmann constant. The coef-
ficients k1s

0 and k1c
0 define the rates at zero force. The differ-

ence in the signs in the exponential force dependence in �2�
is critical for the catch-slip transition. The catch barrier is
lower than the slip barrier in the absence of the force �Fig. 1�.
The force raises the catch barrier and lowers the slip barrier,
inverting their relative heights �18�. The parameters x1s and
x1c are the distances between the minimum and the corre-
sponding maxima, and determine the work carried by the
force on the ligand as it covers these distances. The work
is positive in the slip direction and negative in the catch
direction.

The analysis of the model presented in �18� indicates that
with a constant pulling force the probability distribution
function obeying Eq. �1� has the simple form

P�t� = exp�− t/��f�� , �3�

with the inverse bond lifetime � expressed by the sum of the
slip and catch contributions

1/��f� = k1s
0 exp�x1sf/kT� + k1c

0 exp�− x1cf/kT� . �4�

Reference �18� showed that the bond lifetime ��f� exhibits a
maximum as a function of the pulling force provided that

�k1c
0 x1c�/�k1s

0 x1s� � 1.

Further discussion of the catch-bond model assumes that this
condition holds. Equation �4� gives good agreement �18�
with the experimental data �7,8� on binding of P- and
L-selectins with PSGL-1 in both monomeric and dimeric
forms.

This paper extends the analytic analysis of the two-
pathway model to the widely used jump-ramp force scenario
introduced and applied to the P-selectin/PSGL-1 complex by
Evans and co-workers �5,12,13�. The experimental implica-
tions of the two-pathway model in the time-dependent re-
gime are discussed. In jump-ramp experiments, the force rap-
idly, nearly instantaneously, increases to a jump value f0 and
then gradually grows with the loading rate constant r

f�t� = f0 + rt . �5�

The solution of Eq. �1� with the time-dependent force �5� is
straightforward, but has a complicated analytic form. The

experimental data is typically presented in terms of the force
histograms �13� that are most conveniently described by a
rupture force probability density. The latter is obtained by
solving Eq. �1� and changing variable t to f

p�f , f0� =
1

r��f�
exp�−

kT

r
g�f , f0�� , �6�

where
g�f , f0� = ��f� − ��f0� ,

�7�

��f� =
k1s

0

x1s
exp� x1sf

kT
� −

k1c
0

x1c
exp�− x1cf

kT
� .

Equations �6� and �7� are defined for forces greater than the
jump force

f � f0. �8�

The rupture force probability density �6� evaluated
at f0 immediately gives the bond lifetime �4� ��f0�
=1/ �rp�f0 , f0�� of the constant force regime �7,8�. This result
directly relates the constant force experiments �7,8� to the
jump-ramp experiments �13� allowing one to determine the
bond lifetime ��f� under a constant force by measuring the
initial probability density p�f0 , f0� in the jump-ramp experi-
ments with different jump forces f0 and a fixed ramp rate r.

Further, it is well known for the simple slip-bond model
�k1c

0 =0� that the probability density p�f , f0� is maximized at a
certain force value that depends on r. It is important to es-
tablish what force values maximize the probability density in
the two-pathway catch-slip model. The extrema are deter-
mined by setting the derivative of �6� with respect to f equal
to zero,

�1/��f�� f� − r−1�1/��f��2 = 0. �9�

Since the lifetime ��f�, Eq. �4�, contains no f0, Eq. �9� proves
that the extrema in the probability density are independent of
the initial force jump f0. The extrema will be observed if
they fall within the force interval �8�.

The extrema in the rupture force probability density will
be observed only for sufficiently large loading rates, since
with small r, the second term in Eq. �9� is greater than the
first, and Eq. �9� has no solutions. When r is sufficiently
large, the value fmax of the force that maximizes the prob-
ability density grows with r, and the contributions of the

FIG. 1. Schematic representation of the two-pathway potential
responsible for the catch-slip transition in the biological catch bond.
A ligand in the bound state x1 can escape to the free state 0 through
either of the two transition states xs, xc. The vector indicates the
direction of the force f applied to the ligand.
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catch pathway can be neglected in view of the negative sign
in front of the force in the catch exponents. This leads to the
known expression

fmax =
kT

x1s
ln

rx1s

kTk1s
0 �10�

that maximizes p�f� for the slip system, when k1c
0 =0 and r

�kTk1s
0 /x1s, and maximizes p�f� for the catch-slip system

with sufficiently large loading rates.
While the force fmax �Eqs. �9� and �10��, is independent of

the jump value f0, the maximum value of the density itself
strongly depends on f0

p�fmax, f0� 	 exp� kTk1s
0

rx1s
exp� x1sf0

kT
�� . �11�

Since the probability density is normalized, its growth in one
region must be accompanied by decline in another region.

Equation �9� for the catch-bond system has a pair of so-
lutions above the critical value r�rc. In addition to Eq. �10�,
the second solution fmin corresponds to a minimum in the
probability density. The minimum is absent in purely slip-
bond systems and appears due to the catch barrier. The de-
pendence of fmin on r is more complex compared to fmax and
could not be found analytically. With decreasing r the maxi-
mum and minimum merge at a critical force f = fc. At loading
rates below the critical value rc, the probability density is a
monotonically decreasing function of force. The critical val-
ues of the loading rate rc and force fc are found by setting the
first and second derivatives of p�f , f0�, Eq. �6�, with respect
to f equal to zero. Combination of Eq. �9� for the first de-
rivative with the corresponding equation for the second de-
rivative leads to the following equation that defines the criti-
cal force:

�1/��f�� f� − 2r−2��f�−3 = 0. �12�

The simultaneous solution of Eqs. �9� and �12� gives the
critical loading rate

rc = �1/��fc��2/�1/��f�� f=fc
� . �13�

The catch-slip-bond system can be easily identified and
distinguished from the slip-bond system by the following
two features of the bond rupture probability density at load-
ing rates above the critical value �13�. First, the catch-bond
density exhibits a pair of extrema, a maximum and a mini-
mum, that simultaneously develop at a finite force f �0
when r=rc. In contrast, the slip bond develops only a maxi-
mum, which first appears at f =0. Second, the catch-bond
shows significantly higher rupture probabilities at low forces
than the slip bond. In particular for f0=0, the ratio of the
initial probability density to the density in the maximum is
always less than one for the slip bond

pslip�0,0�/pslip�fmax,0� � 1, fmax � 0, �14�

and, within a wide range of loading rates r�2kTk1c
0 /x1s, is

greater than one for the catch bond

pcatch�0,0�/pcatch�fmax,0� 
 d exp d � 1, d = �kTk1c
0 �/�rx1s� .

�15�

In addition, considering the hypothetical slip bond as the
limit of the present model in the absence of the catch path-
way �k1c

0 =0�, it is straightforward to show that the ratio of
the initial probability densities for the catch and slip bonds

pcatch�0,0�/pslip�0,0� = 1 + k1c
0 /k1s

0 �16�

is significantly greater than one, since the catch barrier is
smaller than the slip barrier, k1c

0 /k1s
0 �1. For instance, in the

P-selectin/PSGL-1 system k1c
0 /k1s

0 
60.
The expressions derived above provide valuable tools for

analysis of the experimental data. Consider the jump-ramp
experiments with the P-selectin/PSGL-1 complex �13�.
Direct fit �18� of the experimental data yielded the following
set of parameter values k1s

0 =0.34 s−1, k1c
0 =20 s−1, x1s

=2.1 Å, x1c=3.8 Å. Solution of Eqs. �12� and �13� for the
critical values of rc, fc with these parameters and temperature
kT=40.8 pN Å gives rc=95.6 pN/s, fc=45.6 pN. For load-

FIG. 2. Bond rupture force probability densities. The points ���
show the experimental data by Evans et al. �13� connected by an
interpolation curve. The dashed lines represent the theoretical re-
sults, Eq. �6�. �a� Experimentally: r=210 pN/s and f0=0. The the-
oretical lines correspond to: �1� critical ramp rate r=rc

=95.6 pN/s characterizing the onset of the maximum-minimum
pair in the probability density and f0=0; �2� r=210 pN/s and f0

=0 as in the experiment; �3� r=210 pN/s and f0=30 pN illustrating
the effect of finite jump force. �b� Experiment: r=1400 pN/s, f0

=0. Theory: �1� r=4000 pN/s, f0=0; �2� r=1400 pN/s, f0=0.

DISTINCTIVE FEATURES OF THE BIOLOGICAL… PHYSICAL REVIEW E 72, 010903�R� �2005�

RAPID COMMUNICATIONS

010903-3



ing rates r�95.6 pN/s the survival probability density of the
P-selectin/PSGL-1 bond is a monotonic function of force
�see curve 1 in Fig. 2�a�� computed with r=rc. For loading
rates above 95.6 pN/s the probability density shows a
maximum-minimum pair �curves 2, 3 in Fig. 2�a��.

The theoretical results are compared with the original ex-
perimental data reported by Evans et al. in the form of force
histograms �13�. The histograms of Figs. 2�b� and 2�c� in
�13� were normalized to obtain the probability densities and
are represented in Figs. 2�a� and 2�b� of this paper by black
dots connected with interpolation lines. The corresponding
experimental loading rate values equal r=210 pN/s and r
=1400 pN/s. The jump force is zero in both cases. The
dashed lines in Fig. 2�a� and 2�b� represent the prediction of
the two-pathway model �6�. The short-dashed lines 2 in Figs.
2�a� and 2�b� are computed for the experimental jump and
ramp values and show good agreement with the experimental
data.

The effect of a nonzero jump force is illustrated in Fig.
2�a� by line 3, for which f0=30 pN and r=210 pN/s. Com-
pared to line 2 with f0=0 and r=210 pN/s, the probability
density corresponding to the nonzero jump is notably in-
creased at large forces f �30 pN at the expense of the low
force region. Line 1 in Fig. 2�b� demonstrates the shift of the
probability maximum with loading rate. For rates r
�200 pN/s, the location of the maximum is well described
by the slip-pathway limit �10�; however, the overall shape of
the probability density, including the existence of the mini-
mum in the low-force region, requires both slip- and catch-
pathway contributions.

In summary, the present paper presented a detailed analy-
sis of the biological two-state catch-bond dissociation under
the action of the time-dependent force �5�. The catch-slip
transition in the receptor-ligand binding is described by a
simple model involving a single bound state and two disso-

ciation pathways. The analysis of the bond survival probabil-
ity density function revealed two distinctive features that can
be easily used for experimental identification of biological
catch and slip bonds. First, the rupture force probability den-
sity of the catch bond exhibits both a minimum and a maxi-
mum as a function of the applied force, in contrast to the slip
bond, which develops only a maximum. The minimum and
maximum of the catch bond exist above a critical loading
rate r�rc, and merge and disappear at the critical point r
=rc. The critical force at which the catch-bond minimum-
maximum pair disappears is finite, in contrast to the slip
bond, where the maximum vanishes at zero critical force.
Below the critical point r�rc the probability densities of
both catch and slip bonds are monotonous and decreasing
functions of force. Second, the catch bond exhibits high rup-
ture probabilities at low forces relative to the maximum.
While the maximum in the probability density distribution
always corresponds to the most likely rupture force for the
slip bond, the catch bond remains more likely broken by a
low force within a wide range of loading rates. The fact that
a low-force probability density is greater than the density in
the maximum provides a clear indication of a catch bond.
Both features that distinguish the catch bond from the slip
bond are masked by large jump forces f0. It is, therefore,
desirable to study the catch-bond unbinding at relatively
large loading rates and small jump forces. The analytic re-
sults obtained with the two-pathway model in the jump-ramp
force regime were illustrated with the experimentally well-
studied P-selectin/PSGL-1 receptor-ligand complex.
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